Makey Makey: Unleashing Creativity

We have a tendency to blame a lack of creativity on laziness or apathy and, while they are certainly factors, oftentimes we just can’t seem to place a finger on why we can’t come up with an innovative idea. What’s even more baffling is that, it’s as if the smarter we become, the more rigid our views on everything around us become as well. There’s a term for this — Functional Fixedness — the cognitive bias where individuals see objects used only in their traditional sense. Functional Fixedness places a stranglehold on perception and hinders the ability to think creatively.

In my graduate course, CEP 811, this week class focused on exploring the idea of repurposing and its implications on creativity and educational technologies. In an engaging and thought-provoking keynote presentation, Dr. Matthew Koehler, professor of educational psychology and educational technology at Michigan State University, and Dr. Punya Mishra, co-director of the Master's in Educational Technology program at Michigan State University, explain that creativity is “easy to recognize, but hard to define” (2012). We’ve all heard the overused statement urging us to 'think outside the box,' yet how do educators utilize educational technology to creatively construct meaningful activities for students? Ironically, “there is no such thing as an educational technology;” we create it ourselves (Mishra, 2012).

In 2012, Eric Rosenbaum and Jay Silver surprised the crowdfunding space, raising more than $500,000 to fund an invention kit they developed called Makey Makey. They claimed the kit would “turn everyday objects into touchpads and combine them with the internet.” By simply combining a circuit board, USB cable, a few wires, alligator clips and everyday objects, Makey Makey breaks the barriers of Functional Fixedness. Still not drinking the Kool-Aid? Search “Makey Makey” on YouTube and you’ll find tons of individuals who have explored the world around them and created inventions out of the wildest objects. Take these for example: a compilation of Makey Makey music inventions, a Makey Makey video game controller, or even a way to make a carrot scream when being sliced!

 

My Makey Makey Invention

Adding myself into the mix, throughout the week I explored my own Makey Makey kit and invented a way to help reinforce training methods with my puppy, Lucy (you may recall my training endeavor from CEP 810). Last week, my fiancé, Samantha, and I were visiting her cousins’ house and happened to see that they were getting rid of an old rabbit pen. The idea struck me that we may be able to repurpose it in our apartment as a way to partition the living room from the kitchen (it has the ability to be situated into different shapes), giving Lucy a sizable, controlled space to roam around without getting into too much trouble. The only issue is, since she is a bit hyperactive, she often jumps on the counters and gate, which is something we’ve been trying to curtail. What better way to help reinforce her training than to invent a way to teach her when we’re not in the room ourselves? This is where my Makey Makey comes in!

Here is my invention in action:

 

How You Can Join in on the Fun

If you’re interested in trying something like this for yourself, all you’ll need is a Makey Makey kit ($49.95), aluminum foil, 28-gauge aluminum or copper craft wire (thinner wire is more flexible), tape (conductive tape helps if you have it), and basic computer programming knowledge.

As seen in the video, I began by first creating a program in Scratch, a free website that allows users to program interactive stories, games and animation. The website uses a form of click-and-drag block coding, so there’s no need to have prior computer programming experience. Of note, the website includes a wealth of step-by-step tutorials, which are an incredible way to introduce yourself and/or your students to programming. After recording myself saying, “Lucy, off,” I created a simple command so that when the space key is pressed, the recording will sound off and count the amount of times it occurs.

Below is my Makey Makey setup. The red cable plugs into the USB port on my computer, the yellow wire connects the space key to the foil on top of the gate, and the green wire connects earth to Lucy. Therefore, when Lucy touches the foil, it closes the circuit and runs the program I’ve created, prompting the recording to sound.

I also repurposed Lucy’s harness using some aluminum foil, conductive tape and craft wire. This took a few tries to get right since I had to make sure that the foil was touching Lucy's body.

Next, I connected wire to the foil, wrapped it around the rings of the harness, coiled it around the leash and ultimately connected it to the Makey Makey. The clip on her leash is metal so I knew that once it touched the rings, it would close the circuit. Lastly, I made sure to tether the leash to her crate to avoid my laptop from being destroyed if she tugged. Below is a video that further explains.

 

Final Thoughts

Although this activity was challenging to say the least, I thoroughly enjoyed the process of creating this invention; it certainly brought out the inner-child in me. I now understand why and how Makey Makey can completely revolutionize learning for students. As I was tinkering with my kit, I was going through the steps of the Engineering Design Process, first defining the problem I was trying to solve — to prevent Lucy from jumping on counters and gate — along with constraints, then moving on to exploring, planning, creating and ultimately improving the invention to be more efficient. With my Intro to Engineering students, Makey Makey can take design challenges to the next level. Furthermore, by integrating computer programming, it can urge students to think critically, sequentially and creatively, fostering invaluable skills in a fun and playful manner.

The sky's the limit when it comes to what Makey Makey can offer students and, as I’ve learned, it’s up to educators to provide them with the tools necessary to become innovative problem solvers. In this case, all we need is a Makey Makey kit and the world around us.

 

Functional Fixedness (2001). In Gale Encyclopedia of Psychology. Retrieved from http://www.encyclopedia.com/medicine/encyclopedias-almanacs-transcripts-and-maps/functional-fixedness

Keevill, A. (2014). Makey Makey Screaming Carrot. Retrieved from https://youtu.be/o4iTQ7lr2W0

Koehler, M. & Mishra, P. (2012). Teaching Creatively: Teachers as Designers of Technology, Content and Pedagogy. Retrieved from https://vimeo.com/39539571

Mishra, P. (2012). Keynote Speaker @ 21st Century Learning Conference - Hong Kong 2012. Retrieved from https://youtu.be/9bwXYa91fvQ

Rosenbaum, E. (2013). MaKey MaKey Music Examples. Retrieved from https://youtu.be/wkPt9MYqDW0

Rosenbaum, E. & Silver, J. (2012). MaKey MaKey: An Invention Kit for Everyone. Retrieved from https://www.kickstarter.com/projects/joylabz/makey-makey-an-invention-kit-for-everyone

Rossberg, D. (2016). MaKey MaKey Game Controller Tutorial. Retrieved from https://youtu.be/81q-n28vOuM

Wohl, J. (2017). Puppy Training w/ Makey Makey. Retrieved from https://scratch.mit.edu/projects/183869285/#player